If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+16r-160=0
a = 1; b = 16; c = -160;
Δ = b2-4ac
Δ = 162-4·1·(-160)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{14}}{2*1}=\frac{-16-8\sqrt{14}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{14}}{2*1}=\frac{-16+8\sqrt{14}}{2} $
| 6=10d−24 | | 0.25h=6 | | h/5+22=32 | | h/5+ 22=32 | | 6x=13/2 | | 10+2n=16 | | 16-2/t=3/2t+9 | | 18=19m-1 | | 87-2x=65 | | 6x+1=2+x | | 12+5=x | | 4p-99=8 | | 0.33(n+3)=10 | | u4+ 2=6 | | 41790=-5x+210 | | 30x+10=200 | | 8x=9=24 | | (2+5x)+6x-5=180 | | .20x=16+.15 | | 5x+6=6x+5 | | 12x^2+17x+6=12x2+17x+6= | | 1/3(n+3)=10 | | 5x-6=14x-4 | | 5x-6=34x-4 | | 3x/2+x/6-2x/9=13 | | m/2+6=20 | | 5x+3+(10-7x)=180 | | 4x/9-5x/12=1 | | h-9=7 | | 60=2x+5 | | 4z+z=9 | | d=523 |